If it's not what You are looking for type in the equation solver your own equation and let us solve it.
195w-10w^2=0
a = -10; b = 195; c = 0;
Δ = b2-4ac
Δ = 1952-4·(-10)·0
Δ = 38025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{38025}=195$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(195)-195}{2*-10}=\frac{-390}{-20} =19+1/2 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(195)+195}{2*-10}=\frac{0}{-20} =0 $
| U-77=14+8u | | 13+2k=3k+4 | | −3t+6=0 | | 2a/5=8/10 | | 4*(9^6x-6)=32 | | 19=-5(9d+4) | | 140-w=480 | | 1/2(6x+4)=2x+12 | | r-442=1016 | | 1/26x+4=2x+12 | | 1/2(3x-5)=3/4(6x+2) | | 14−3z=+8+z | | 5c+8.50=38.45 | | -3(1-4h)=15 | | 1/2x-8=58 | | 10×-12y=6 | | 2x+.4x=25x | | 6z+9+8z=33 | | U-28+49=14+8u | | 3-7|6-6n|=-81 | | k/4-5=11 | | 2(12b+15)+15=20b-11 | | 3(4c+7)=-35+5c | | 60+2x+20=180. | | -36=-8u+6(u-3) | | (3x−1)/4=−5/11 | | 40=15-9x=35 | | 10x-18=7x+18 | | 3x+26=x-6 | | 4(3+6)=(X3)+(4x)= | | 3(12=4y)-5y=15 | | z=21/7 |